Diastereoselectivity in the 1,2-Addition of Silylazoles to Chiral Aldehydes. Stereocontrolled Homologation of α -Hydroxyaldehydes.

Alessandro Dondoni^{*}, Marco Fogagnolo, Alessandro Medici, and Paola Pedrini

Dipartimento di Chimica, Università di Ferrara, Ferrara, Italy

The addition of 2-trimethylsilylazoles (thiazole, benzothiazole, oxazole) to α -asymmetric aldehydes give the corresponding <u>O</u>-silylcarbinols in good chemical yield and high stereoselectivity; the reaction is employed for the stereoselective homologation of D-glyceraldehyde.

Asymmetric control in carbon-carbon bond forming reactions is one of the major challenge in organic synthesis.¹ Various stereoselective additions of organometallics to carbonyl compounds have been reported,² but only in a few instances the organic nucleophile was an heterocyclic ring.³ Yet, chiral building blocks bearing an heterocyclic ring are particularly useful in view of further synthetic elaborations where the heterocycle can play the role of a masked functionality or a specific activator.⁴ We here report on the significant stereoselectivity in the carbon-carbon bond formation between silylazoles and aldehydes.

We have recently described the reaction of 2-trimethylsilylthiazole (1) with representative aromatic and aliphatic aldehydes to give the corresponding secondary <u>0</u>-trimethylsilylcarbinols in good yield. ⁵ Formally, this reaction corresponds to the 1,2-addition of the C-Si bond of (1) to the C=O of the aldehyde. Further to that, we have considered the possibility of exerting an asymmetric control on the reaction by using aldehydes bearing an α -chiral centre. Thus, the addition of (1) to α -asymmetric aldehydes (**4a**-c) (Scheme 1) proceeded under mild conditions in good chemical yield and

Scheme 1

5478

significant stereoselectivity (Table).

TABLE.

Run	Azole			Products ^a		δ (CDC1 ₃) ^b	
		Aldehyde	5,6	Ratio 5:6 (yield %)	Solv./Temp. Time(h)	J (Hz) HHvic	
						5	6
	/N	~0^ Ph					
1	KSiMe₃	j.	а	33:66	CH2C12/rt	5.10	4.85
	1	4a		(70)	4	3.91 [°]	4.80
2	1		b	73:27	neat/0°C	5.06	5.05
		4b		(73)	6	4.81 ^d	6.82
		_/					
3	1		с	>95:<5	CH_C1_/rt	5.07	4.92
		СНО		(93)	4	5.10 ^e	6.01 ^f
4	SiMe ₂	4c	d	80:20	neat/rt	5.15	5.01
				(65)	24	5.32	5.67
	2 Ma						
5	N N	4.	е	21:79	neat/rt	4.64	4.70
	∽SiMe₃	40		(60)	24	5.85 ^g	6.06 ^g
	J						

^aDiastereomeric ratios (NMR) and yields (overall on isolated products) refer to the desilylated carbinols. ^bNMR data refer to the proton of the formed epimeric centre. ^cL. M. Jackman, S. Sternhell in "Application of Nuclear Magnetic Resonance Spectroscopic in Organic Chemistry", 2nd edn., vol. 5, Pergamon Press, Oxford, 1969, pag. 291. ^cC. A. Kingsbury, W. B. Thornton, <u>J. Org. Chem.</u>, **31**, 1000 (1966). ^eD. Horton, J. B. Hughes, J. K. Thomson, <u>J. Org. Chem.</u>, **33**, 728 (1968). ¹The NMR data of **6**c have determined on a sample obtained for 2-Lithiothiazole and **4c**. ⁵Due to the very closed values of the two coupling costants, these assignements will be checked by further experiments.

In particular the reaction of (1) with <u>D</u>-glyceraldehyde acetonide (4c) gave the anti-isomer (5c) with >95% diastereomeric purity.⁶ A significant stereoselection was observed also in the addition of 2-trimethylsilylbenzothiazole (2) and 4-methyl-trimethylsilyloxazole (3)⁷ to (4c). On the other hand, the reactions of 2-lithiothiazole and its benzo-derivative with the same aldehyde (4c) $(Et_2^{0}, -78^{\circ}C)$ showed <u>a complete lack of stereoselectivity</u> (5c:6c, 50:50). Concerning the diastereoselectivity, this appeared to vary depending on the azole (runs 3-5) and the substituents at the chiral centre of the aldehyde (runs 1-3). Although further work is required to clarify the mechanistic origins of the observed effects, we now suggest that the exclusive anti-selectivity in the addition of the silylthiazole (1) to the aldehyde (4c) is compatible with a four-centre

transition state⁸ (Scheme 2) where bonding between nitrogen of the thiazole ring and carbon of the carbonyl occurs in concert with transfer of the silyl group from C-2 to oxygen. This would lead to a 2-thiazolium ylide⁹ (**9**c) which by 1,2-shift of the <u>N</u>-silyloxy moiety gives the final adduct (**5**c). As the stereochemical outcome of the reaction has been determined at the level of the ylide formation, the latter process must occur with retention of configuration.¹⁰ The stereorandom addition of 2-lithiothiazole to (**4**c) indirectly supports the above hypothesis.

Scheme 2

For the equivalence of a C-2 substituted thiazole with an aldehyde,¹¹ the adduct (5c) can be considered a masked form of aldehydo-<u>D</u>-erythrose. Accordingly, unmasking the formyl group of (5c) (Scheme 3) using suitable reactions from the literature,¹¹ the trialkoxy derivative of <u>D</u>-erythrose (10) was obtained in 50-60% overall yield and >95% diastereomeric excess.¹² Therefore, the 1,2-addition between 2-trimethylsilylthiazole (1) and <u>D</u>-glyceraldehyde acetonide (4c) provides an high stereocontrolled homologation of the latter with good chemical yield. The reaction of (1) with (10) proved to be equally anti-diastereoselective (>95%) to give the adduct (11) in good yield.¹³

i, THF, H_2O/F^- ; ii, SO_2 , $Me_3O^+BF_4^-$; iii, EtOH, NaBH₄; iv, THF, NaH, $IN(Bu)_4$, BnBr; v, MeOH, H_2O , HgCl₂.

Compound (11), which is a masked form of aldehydo-<u>D</u>-ribose is an attractive chiral building-block suitable for selective synthetic elaborations owing to the different protections of the hydroxyl groups. One can in principle repeat this reiterative sequence and prepare chiral anti-1,2-polyol systems. The rationale behind this project is the fact that the 1,2-diol moiety occurs in a moltitude of natural products such as pheromones, macrolides and all carbohydrates.

In conclusion, this preliminary work shows that the addition of 2-trimethylsilylthiazoles and oxazoles to chiral aldehydes can be a highly stereoselective and thus synthetically useful process.

Acknowledgment. We thank Dr. G. Fantin for recording NMR and Mass spectra.

References and Notes

- D. A. Evans, J. V. Nelson, T. R. Taber, <u>Top. Stereochem.</u>, **13**, 1 (1982); T. Mukaiyama, <u>Org.</u> <u>React.</u>, 203 (1981); C. H. Heathcock, <u>Science</u>, **214**, 395 (1981); S. Masamune, W. Choy, J. S. Petersen, L. R. Sita, <u>Angew. Chem. Int. Ed. Engl.</u>, **24**, 1 (1985).
- a) E. E. Eliel in "Asymmetric Synthesis", J. D. Morrison Ed., Academic Press, vol. 2, ch. 5. b) For recent leading references see: W. C. Still, J. H. McDonald, <u>Tetrahedron Lett.</u>, 21, 1031 (1980); W. C. Still, J. A. Schneider, <u>ibid.</u>, 21, 1035 (1980); J. Mulzer, A. Angermann, <u>ibid.</u>, 28, 2843 (1983); E. K. Dolence, M. Adamczyk, D. S. Watt, G. B. Russell, D. H. S. Horn, <u>ibid.</u>, 26, 1189 (1985).
- K. Suzuki, Y. Yuki, T. Mukaiyama, <u>Chem. Lett.</u>, 1529 (1981); T. Mukaiyama, Y. Yuki, K. Suzuki, <u>ibid.</u>, 1169 (1982).
- A. I. Meyers in "Heterocycles in Organic Synthesis", Wiley, New York, 1974; A. P. Kozikowski in "Comprehensive Heterocyclic Chemistry", Ed. A. R. Katritzky, Pergamon Press, London, 1984, vol. 1, ch. 16.
- 5. A. Medici, G. Fantin, M. Fogagnolo, A. Dondoni, Tetrahedron Lett., 24, 2901 (1983).
- 6. The stereochemistry of adducts (5) (6) was assigned by NMR of the derived desilylated carbinols (Table).
- 7. A. Dondoni, T. Dall'Occo, G. Fantin, M. Fogagnolo, A. Medici, P. Pedrini, <u>J.C.S. Chem. Commun.</u>, 258 (1984).
- 8. The aldehyde is oriented according to the Cram's open-chain model (Ref. 2a).
- 9. The mechanism <u>via</u> thiazolium ylide appears quite general for carbodesilylation of (1) and unlike that suggested in our previous report (Ref. 4), this should hold also for reactions with aldehydes. See also: A. Dondoni, <u>Phosphorus and Sulphur and the Related Elements</u>, **24**, 1 (1985).
- 10. This a formal Stevens rearrangement |S. H. Pine, <u>Org. React.</u>, 18, 403 (1970)| which is well known to occur with retention of configuration.
- 11. L. J. Altman, S. L. Richheimer, <u>Tetrahedron Lett.</u>, 4709 (1971); A. I. Meyers, R. Munavu, J. Durandetta, <u>ibid.</u>, 3929 (1972).
- 12. The compound (10) showed the following data: IR (film) 1745, 1460, 1380 cm⁻¹; ¹H NMR (CDCl) **b** 9.65 (d, 1H, J = 2.1 Hz), 7.32 (s, 5H), 4.65 (d, 2H), 4.48-3.87 (m, 3H), 3.8 (dd, 1H, J = 2.1 Hz, J = 6.4 Hz), 1.42 (s, 3H), 1.33 (s, 3H); ¹³C NMR (CDCl₃) **b** 201.4 (d), 137.2 (s), 128.7 (d), 128.3 (d), 110.2 (s), 83.3 (dd), 75.2 (d), 73.5 (d), 66.3 (t), 26.5 (q), 25.2 (q); $|\alpha|_{p}$ +29.2 (c 2.747, CHCl₃).
- 13. The structure of compound (11) was established by X-ray crystallography: ¹H NMR (CDCl₃) δ 7.78 (d, 1H, J = 3.3 Hz), 7.34 (m, 6H), 5.22 (t, 1H, J = 4.4 Hz), 4.68 (d, 2H), 4.31-3.82³ (m, 4H), 3.52 (d, 1H, J = 4.4 Hz), 1.38 (s, 3H), 1.32 (s, 3H); ¹³C NMR (CDCl₃) δ 171.2 (s), 142.3 (d), 138.1 (s), 128.6 (d), 128.2 (d), 128.1 (d), 119.6 (d), 109.1 (s), 82.1 (d), 75.8 (d), 74.5 (t), 73.1 (d), 66.1 (t), 26.4 (q), 25.3 (q); $|\alpha|_{D}$ +21.1 (c 0.956, CHCl₂)

(Received in UK 9 September 1985)